Micro 260

Chapter 6A

Bacterial Nutrition and Growth

Types of Bacteria

	Energy	Electron	Carbon
Photo Autotrophs (photo lithotrophs)	Light	Inorganic Molecule	CO ₂ (plants & cyanobacteria)
Chemo heterotrophs (Chemo organotrophs)	Organic molecule reduced carbon such as glucose	Organic molecule H+ ions stripped from carbon	Organic (animals, most bacteria)
Photo Heterotrops (Photo organotrophs)	Light	Organic molecule alcohol, fatty acids, & organic acid.	Organic (unique to some bacteria) Green non-sulfur bacteria
Chemo Autotrophs (chemo lithotrophs)	Inorganic molecule uses reduced inorganic compounds	Inorganic molecule $(H_2S, S, NH_3, NO_2^-, Fe^{+2}, CO.)$	CO_2 (unique to bacteria) Some bacteria are know to require organic carbon

Carbon

- Structural organic molecules, energy source
- Chemoheterotrophs use organic carbon sources
- Autotrophs use CO₂
- CHNOPS
 - Carbon
 - Hydrogen
 - Nitrogen
 - Oxygen
 - Phosphorous
 - Sulfur

- Nitrogen
 - In amino acids, proteins
 - Most bacteria decompose proteins
 - Some bacteria use NH₄⁺ or NO₃⁻
 - A few bacteria use N₂ in nitrogen fixation
- Sulfur
 - In amino acids, thiamine, biotin
 - Most bacteria decompose proteins
 - Some bacteria use SO₄²⁻ or H₂S
- Phosphorus
 - In DNA, RNA, ATP, and membranes
 - PO₄³⁻ is a source of phosphorus

- Trace Elements
 - Inorganic elements required in small amounts
 - Mg, Mn, Mo, Cu, Fe, Na, K, Ca, Zn, Cl
 - Usually as enzyme cofactors

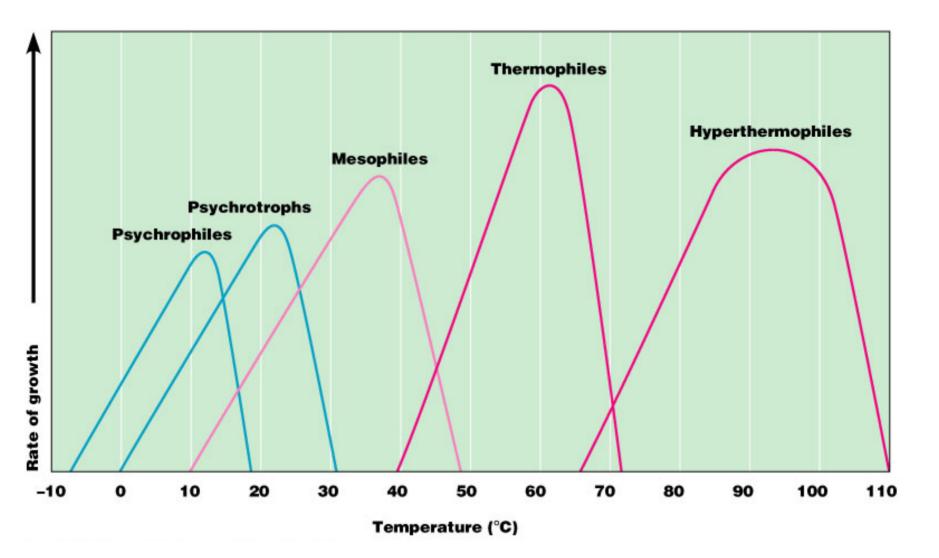
- Organic Growth Factors
 - Organic compounds obtained from the environment
 - Vitamins, amino acids, purines, pyrimidines

Environmental Effects on the Growth of Bacteria

Microbial Adaptations to various types of environments

- 1) Temperatures;
- 2) Solution pH;
- 3) Salinity;
- 4) Oxygen requirements (Aerobic/Anaerobic)
- 5) Other factors

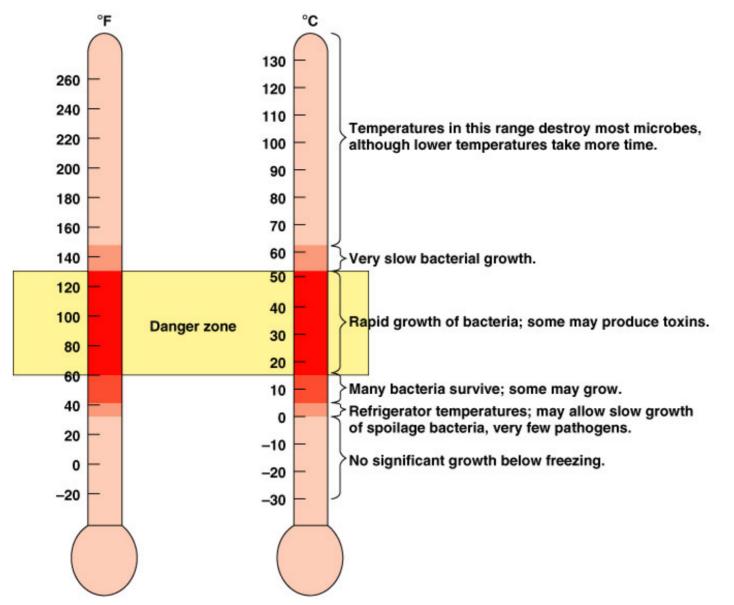
Microbial Growth


 Microbial growth = increase in number of cells, not cell size

- Temperature
 - Minimum growth temperature
 - Optimum growth temperature
 - Maximum growth temperature

Temperature For optimal growth and metabolism

- Psychrophile 0 to 15 C
- Psychrotrophs 0 to 32 C
- Mesophile- 20 to 40 C
- Thermophile- 45 to 80 C
- Hyperthermophiles 68 to 110 C

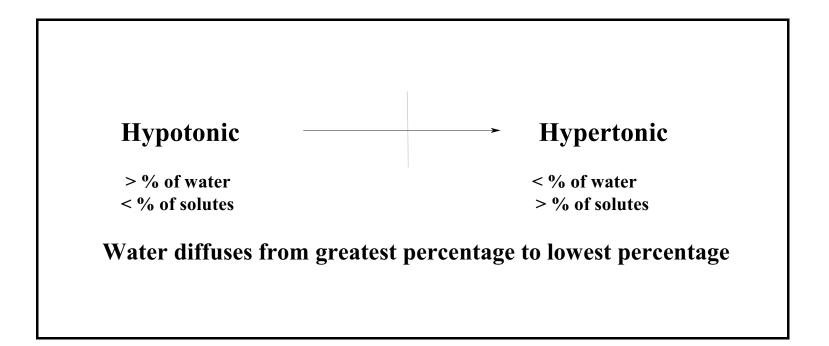

Temperature

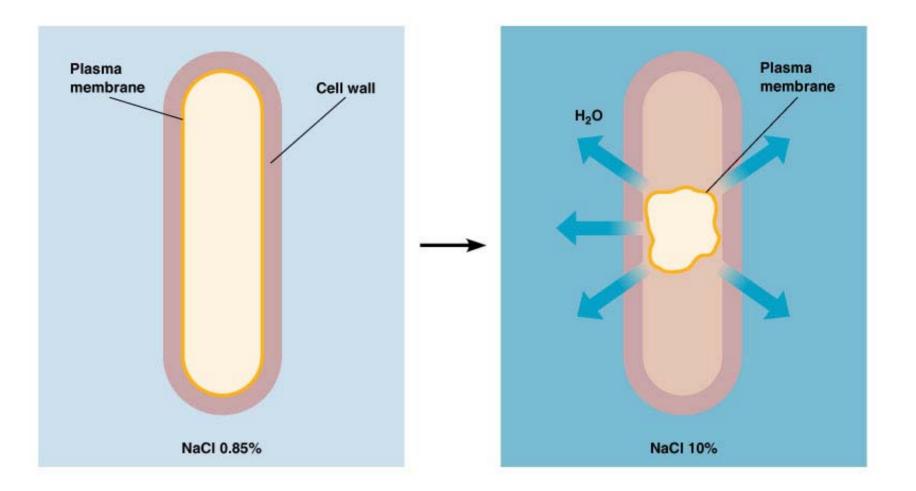
Psychrotrophs

- Grow between 0°C and 20-30°C
- Cause food spoilage

Psychrotrophs

• pH


- Most bacteria grow between pH 6.5 and 7.5
- Molds and yeasts grow between pH 5 and 6
- Acidophiles grow in acidic environments


Diffusion

- Net movement of molecules from a high concentrated area to a low concentrated area
- No energy is expended (passive)
- Concentration gradient and permeability affect movement

- Osmotic Pressure
 - Hypertonic environments, increase salt or sugar, cause plasmolysis
 - Extreme or obligate halophiles require high osmotic pressure
 - Facultative halophiles tolerate high osmotic pressure

Tonicity and Diffusion of Water

• Oxygen (O₂)

obligate	Faultative	Obligate	Aerotolerant	Microaerophiles
aerobes	anaerobes	anaerobes	anaerobes	
	0000 0000 0000			

Toxic Forms of Oxygen

- Singlet oxygen: O₂ boosted to a higher-energy state
- Superoxide free radicals: O₂⁻

$$O_2^- + 2 H^+ \xrightarrow{superoxide dismutase} H_2O_2 + O_2$$

• Peroxide anion: O₂²⁻

 $\begin{array}{c} 2 \ \text{H}_2\text{O}_2 & \stackrel{\text{catalase}}{\longrightarrow} & 2 \ \text{H}_2\text{O} + \text{O}_2 \\ \\ \text{H}_2\text{O}_2 + 2 \ \text{O}^+ & \stackrel{\text{peroxidase}}{\longrightarrow} & 2 \ \text{H}_2\text{O} \end{array}$

Hydroxyl radical (OH•)

Toxic Forms of Oxygen

Electron reduction of oxygen in a stepwise manner

Reaction	Reaction type
$O_2 + e^> O_2^-$	Superoxide
$O_2^- + e^- + 2H^+> H_2O_2$	Hydrogen peroxide
$H_2O_2 + e^- + H^+ \longrightarrow H_2O_2 + OH^-$	 Hydroxyl radical
$OH \bullet + e^- + H^+ > H_2O$	Water

Enzyme required to carry out reaction:

Catalase $H_2O_2 + H_2O_2 = 2 H_2O + O_2$

Peroxidase

 $H_2O_2 + NADH + H^+ - 2 H_2O + NAD^+$

Superoxide dismutase

 $O_2^- + O_2^- + H^+ - - - > H_2O_2 + O_2$

Superoxide dismutase/catalase in combination

 $4 O_{2}^{-} + 4H^{+} ----> 2H_{2}O_{2} + 3 O_{2}$

Superoxide reductase

 $O_2^- + 2H^+ + cyt c_{reduced} ----> H_2O_2 + Cyt c_{oxidized}$

Other factors

Radiation- withstand UV, infrared

Barophiles – withstand high pressures

Spores and cysts- can survive dry habitats

Terms for Culture Media

- Culture Medium: Nutrients prepared for microbial growth
- Sterile: No living microbes
- Inoculum: Introduction of microbes into medium
- Culture: Microbes growing in/on culture medium

- Complex polysaccharide
- Used as solidifying agent for culture media in Petri plates and slants
- Generally not metabolized by microbes
- Liquefies at 100°C
- Solidifies ~40°C

Culture Media

- Chemically Defined Media: Exact chemical composition is known
- Complex Media: Extracts and digests of yeasts, meat, or plants
 - Nutrient broth
 - Nutrient agar

Culture Media

Sodium chloride

Agar

Water

TABLE 6.2	A Chemically Defined Medium for Growing a Typical Chemoheterotroph, Such as <i>E. coli</i>
Constituent	A

Constituent	Amount
Glucose	5.0 g
Ammonium phosphate, monobasic (NH ₄ H ₂ PO ₄)	1.0 g
Sodium chloride (NaCl)	5.0 g
Magnesium sulfate (MgSO ₄ · 7H ₂ O)	0.2 g
Potassium phosphate, dibasic (K ₂ HPO ₄)	1.0 g
Water	1 liter

TABLE 6.4	Composition of Nu Agar, a Complex M for the Growth of Heterotrophic Bact	trient Aedium eria
Constituent		Amount
Peptone (partia	lly digested protein)	5.0 g
Beef extract		3.0 g

8.0 g

15.0 g

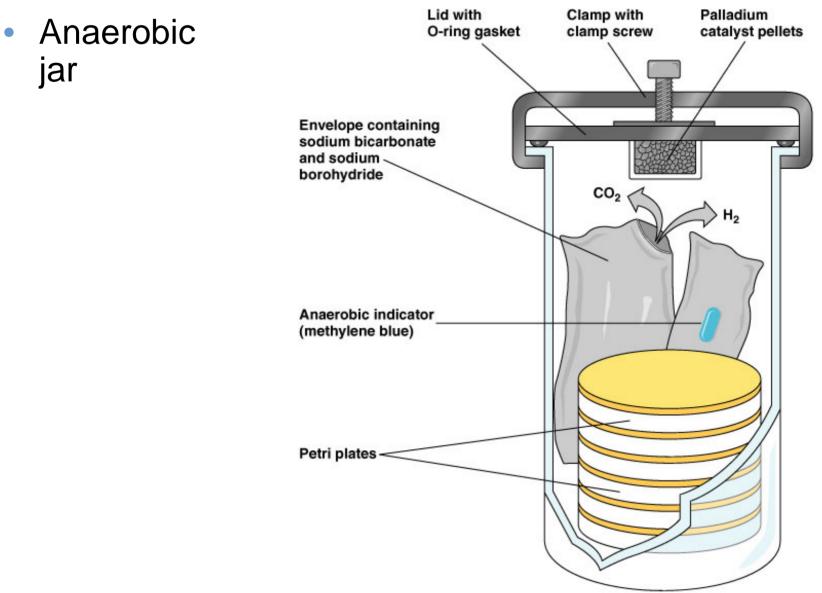
1 liter

Medium	Selective Agent(s)	Organism Encouraged to Grow
Brilliant green agar	Brilliant green	Gram-negative rods*
Eosin-methylene blue agar	Eosin Y, methylene blue	Grams-negative rods
Hektoen enteric agar	Bile salts	Grams-negative rods
MacConkey agar	Bile salts, crystal violet	Grams-negative rods
Mannitol-salt agar	Sodium chloride	Staphylococcus aureus

* this medium is not used for the isolations of Salmonella typhi.

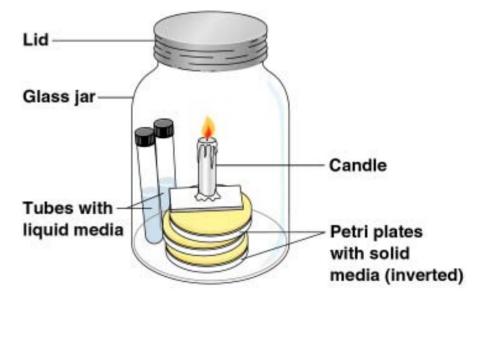
A selective medium is defined as one that permits the growth of certain organisms while preventing or retarding the growth of others. Selection, in general, can be carried out through (1) control of ingredients of the medium, (2) alteration of atomospheric components, or (3) adjustment of incubation temperature.

Selective media may contain selective agents the inhibit the growth of one or more unwanted organisms in a specimen without preventing the growth of the wanted organism... i.e...Different nutrient rich media or Anti-biotic media impregnated media.


Medium	Substrates(s)	Type of medium	Reaction and descriptions
Blood agar	Hemoglobin	D	 Alpha hemolysis (green zones around colonies) Beat hemolysis (clear zones around colonies) Gamma hemolysis (no zone around colonies)
brilliant green agar	Lactose, sucrose	SD	 Lactose-fermenter (yellow-green colonies) Non-lactose fermenter (pink to white colonies Surrounded by brilliant red zones)
Eosin-methylene blue agar	Lactose, sucrose	SD	 Lactose-fermenter (dark purple colonies or colonies With dark centers and transparent colorless borders) Non-lactose or non-sucrose fermenters (colorless colonies.
Hektoen enteric agar	Lactose, sucrose salicin, and amino acids containing sulfur	SD	 Lactose-fermenter (salmon-pink colonies) Non-lactose-fermenters (green, most colonies) Salicin-fermenters (pink zones around colonies) Non-salicin-fermenters (no change) H₂S producers (colonies with black centers)
MacConkey agar	Lactose	SD	 Lactose-fermenter (pink-red colony is surrounded by pink zones due to precipitated bile). Non-lactose fermenter (colorless and translucent colonies)
Mannitol-salt agar	Mannitol	SD	 Mannitol fermenter (colonies surrounded by yellow zone. Non-mannitol fermenter (small colonies with no color yellow change)

Summary of Reactions Associated with Selected Differential (D) and Selective Differential (SD) Media Used for Isolation and/or Identification.

Anaerobic Culture Methods

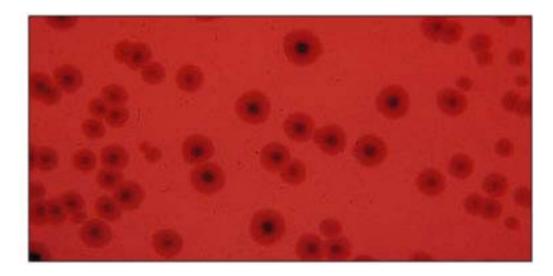

- Reducing media
 - Contain chemicals (thioglycollate or oxyrase) that combine O₂
 - Heated to drive off O₂

Anaerobic Culture Methods

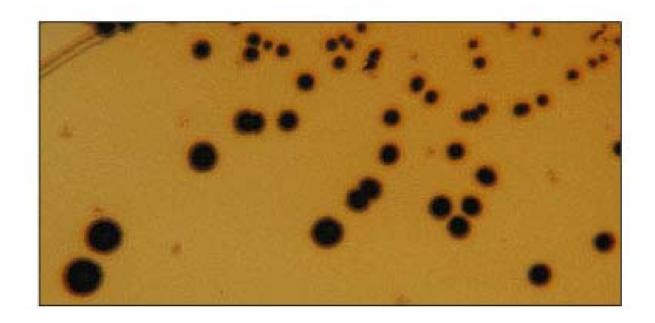


Capnophiles require high CO₂

Candle jar

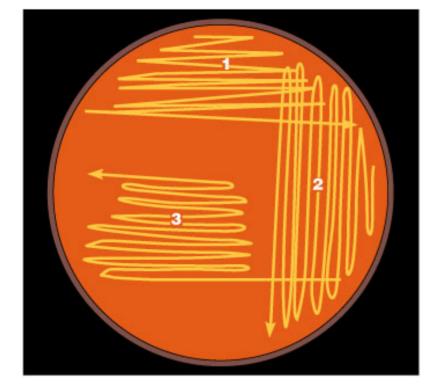

CO₂-packet

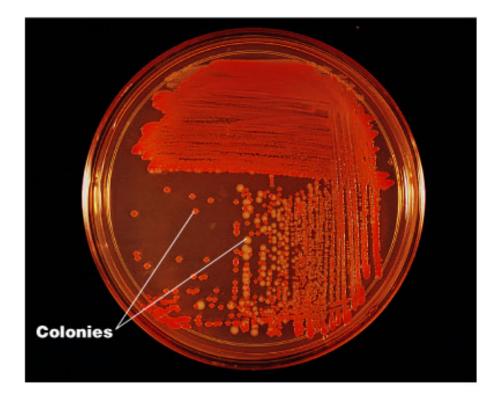
Selective Media


 Suppress unwanted microbes and encourage desired microbes.

Differential Media

Make it easy to distinguish colonies of different microbes.




Enrichment Media

- Encourages growth of desired microbe
- Assume a soil sample contains a few phenoldegrading bacteria and thousands of other bacteria
 - Inoculate phenol-containing culture medium with the soil and incubate
 - Transfer 1 ml to another flask of the phenol medium and incubate
 - Transfer 1 ml to another flask of the phenol medium and incubate
 - Only phenol-metabolizing bacteria will be growing

- A pure culture contains only one species or strain
- A colony is a population of cells arising from a single cell or spore or from a group of attached cells
- A colony is often called a colony-forming unit (CFU)

Streak Plate

